Posts Tagged ‘sales forecasting’

Forecast Friday Topic: Multicollinearity – Correcting and Accepting it

July 22, 2010

(Fourteenth in a series)

In last week’s Forecast Friday post, we discussed how to detect multicollinearity in a regression model and how dropping a suspect variable or variables from the model can be one approach to reducing or eliminating multicollinearity. However, removing variables can cause other problems – particularly specification bias – if the suspect variable is indeed an important predictor. Today we will discuss two additional approaches to correcting multicollinearity – obtaining more data and transforming variables – and will discuss when it’s best to just accept the multicollinearity.

Obtaining More Data

Multicollinearity is really an issue with the sample, not the population. Sometimes, sampling produces a data set that might be too homogeneous. One way to remedy this would be to add more observations to the data set. Enlarging the sample will introduce more variation in the data series, which reduces the effect of sampling error and helps increase precision when estimating various properties of the data. Increased sample sizes can reduce either the presence or the impact of multicollinearity, or both. Obtaining more data is often the best way to remedy multicollinearity.

Obtaining more data does have problems, however. Sometimes, additional data just isn’t available. This is especially the case with time series data, which can be limited or otherwise finite. If you need to obtain that additional information through great effort, it can be costly and time consuming. Also, the additional data you add to your sample could be quite similar to your original data set, so there would be no benefit to enlarging your data set. The new data could even make problems worse!

Transforming Variables

Another way statisticians and modelers go about eliminating multicollinearity is through data transformation. This can be done in a number of ways.

Combine Some Variables

The most obvious way would be to find a way to combine some of the variables. After all, multicollinearity suggests that two or more independent variables are strongly correlated. Perhaps you can multiply two variables together and use the product of those two variables in place of them.

So, in our example of the donor history, we had the two variables “Average Contribution in Last 12 Months” and “Times Donated in Last 12 Months.” We can multiply them to create a composite variable, “Total Contributions in Last 12 Months,” and then use that new variable, along with the variable “Months Since Last Donation” to perform the regression. In fact, if we did that with our model, we end up with a model (not shown here) that has an R2=0.895, and this time the coefficient for “Months Since Last Donation” is significant, as is our “Total Contribution” variable. Our F statistic is a little over 72. Essentially, the R2 and F statistics are only slightly lower than in our original model, suggesting that the transformation was useful. However, looking at the correlation matrix, we still see a strong negative correlation between our two independent variables, suggesting that we still haven’t eliminated multicollinearity.

Centered Interaction Terms

Sometimes we can reduce multicollinearity by creating an interaction term between variables in question. In a model trying to predict performance on a test based on hours spent studying and hours of sleep, you might find that hours spent studying appears to be related with hours of sleep. So, you create a third independent variable, Sleep_Study_Interaction. You do this by computing the average value for both the hours of sleep and hours of studying variables. For each observation, you subtract each independent variable’s mean from its respective value for that observation. Once you’ve done that for each observation, multiply their differences together. This is your interaction term, Sleep_Study_Interaction. Run the regression now with the original two variables and the interaction term. When you subtract the means from the variables in question, you are in effect centering interaction term, which means you’re taking into account central tendency in your data.

Differencing Data

If you’re working with time series data, one way to reduce multicollinearity is to run your regression using differences. To do this, you take every variable – dependent and independent – and, beginning with the second observation – subtract the immediate prior observation’s values for those variables from the current observation. Now, instead of working with original data, you are working with the change in data from one period to the next. Differencing eliminates multicollinearity by removing the trend component of the time series. If all independent variables had followed more or less the same trend, they could end up highly correlated. Sometimes, however, trends can build on themselves for several periods, so multiple differencing may be required. In this case, subtracting the period before was taking a “first difference.” If we subtracted two periods before, it’s a “second difference,” and so on. Note also that with differencing, we lose the first observations in the data, depending on how many periods we have to difference, so if you have a small data set, differencing can reduce your degrees of freedom and increase your risk of making a Type I Error: concluding that an independent variable is not statistically significant when, in truth it is.

Other Transformations

Sometimes, it makes sense to take a look at a scatter plot of each independent variable’s values with that of the dependent variable to see if the relationship is fairly linear. If it is not, that’s a cue to transform an independent variable. If an independent variable appears to have a logarithmic relationship, you might substitute its natural log. Also, depending on the relationship, you can use other transformations: square root, square, negative reciprocal, etc.

Another consideration: if you’re predicting the impact of violent crime on a city’s median family income, instead of using the number of violent crimes committed in the city, you might instead divide it by the city’s population and come up with a per-capita figure. That will give more useful insights into the incidence of crime in the city.

Transforming data in these ways helps reduce multicollinearity by representing independent variables differently, so that they are less correlated with other independent variables.

Limits of Data Transformation

Transforming data has its own pitfalls. First, transforming data also transforms the model. A model that uses a per-capita crime figure for an independent variable has a very different interpretation than one using an aggregate crime figure. Also, interpretations of models and their results get more complicated as data is transformed. Ideally, models are supposed to be parsimonious – that is, they explain a great deal about the relationship as simply as possible. Typically, parsimony means as few independent variables as possible, but it also means as few transformations as possible. You also need to do more work. If you try to plug in new data to your resulting model for forecasting, you must remember to take the values for your data and transform them accordingly.

Living With Multicollinearity

Multicollinearity is par for the course when a model consists of two or more independent variables, so often the question isn’t whether multicollinearity exists, but rather how severe it is. Multicollinearity doesn’t bias your parameter estimates, but it inflates their variance, making them inefficient or untrustworthy. As you have seen from the remedies offered in this post, the cures can be worse than the disease. Correcting multicollinearity can also be an iterative process; the benefit of reducing multicollinearity may not justify the time and resources required to do so. Sometimes, any effort to reduce multicollinearity is futile. Generally, for the purposes of forecasting, it might be perfectly OK to disregard the multicollinearity. If, however, you’re using regression analysis to explain relationships, then you must try to reduce the multicollinearity.

A good approach is to run a couple of different models, some using variations of the remedies we’ve discussed here, and comparing their degree of multicollinearity with that of the original model. It is also important to compare the forecast accuracy of each. After all, if all you’re trying to do is forecast, then a model with slightly less multicollinearity but a higher degree of forecast error is probably not preferable to a more precise forecasting model with higher degrees of multicollinearity.

The Takeaways:

  1. Where you have multiple regression, you almost always have multicollinearity, especially in time series data.
  2. A correlation matrix is a good way to detect multicollinearity. Multicollinearity can be very serious if the correlation matrix shows that some of the independent variables are more highly correlated with each other than they are with the dependent variable.
  3. You should suspect multicollinearity if:
    1. You have a high R2 but low t-statistics;
    2. The sign for a coefficient is opposite of what is normally expected (a relationship that should be positive is negative, and vice-versa).
  4. Multicollinearity doesn’t bias parameter estimates, but makes them untrustworthy by enlarging their variance.
  5. There are several ways of remedying multicollinearity, with obtaining more data often being the best approach. Each remedy for multicollinearity contributes a new set of problems and limitations, so you must weigh the benefit of reduced multicollinearity on time and resources needed to do so, and the resulting impact on your forecast accuracy.

Next Forecast Friday Topic: Autocorrelation

These past two weeks, we discussed the problem of multicollinearity. Next week, we will discuss the problem of autocorrelation – the phenomenon that occurs when we violate the assumption that the error terms are not correlated with each other. We will discuss how to detect autocorrelation, discuss in greater depth the Durbin-Watson statistic’s use as a measure of the presence of autocorrelation, and how to correct for autocorrelation.

*************************

If you Like Our Posts, Then “Like” Us on Facebook and Twitter!

Analysights is now doing the social media thing! If you like Forecast Friday – or any of our other posts – then we want you to “Like” us on Facebook! By “Like-ing” us on Facebook, you’ll be informed every time a new blog post has been published, or when other information comes out. Check out our Facebook page! You can also follow us on Twitter.

Advertisements

Forecast Friday Topic: Simple Regression Analysis

May 27, 2010

(Sixth in a series)

Today, we begin our discussion of regression analysis as a time series forecasting tool. This discussion will take the next few weeks, as there is much behind it. As always, I will make sure everything is simplified and easy for you to digest. Regression is a powerful tool that can be very helpful for mid- and long-range forecasting. Quite often, the business decisions we make require us to consider relationships between two or more variables. Rarely can we make changes to our promotion, pricing, and/or product development strategies without them having an impact of some kind on our sales. Just how big an impact would that be? How do we measure the relationship between two or more variables? And does a real relationship even exist between those variables? Regression analysis helps us find out.

One thing I must point out: Remember the “deviations” we discussed in the posts on moving average and exponential smoothing techniques: The difference between the forecasted and actual values for each observation, of which we took the absolute value? Good. In regression analysis, we refer to the deviations as the “error terms” or “residuals.” In regression analysis, the residuals – which we will square, rather than take the absolute value – become very important in gauging the regression model’s accuracy, validity, efficiency, and “goodness of fit.”

Simple Linear Regression Analysis

Sue Stone, owner of Stone & Associates, looked at her CPA practice’s monthly receipts from January to December 2009. The sales were as follows:

Month 

Sales 

January 

$10,000 

February 

$11,000 

March 

$10,500 

April 

$11,500 

May 

$12,500 

June 

$12,000 

July 

$14,000 

August 

$13,000 

September 

$13,500 

October 

$15,000 

November

$14,500 

December 

$15,500 

Sue is trying to predict what sales will be for each month in the first quarter of 2010, but is unsure of how to go about it. Moving average and exponential smoothing techniques rarely go more than one period ahead. So, what is Sue to do?

When we are presented with a set of numbers, one of the ways we try to make sense of it is by taking its average. Perhaps Sue can average all 12 months’ sales – $12,750 – and use that her forecast for each of next three months. But how accurately would that measure each month of 2009? How spread out are each month’s sales from the average? Sue subtracts the average from each month’s sales and examines the difference:

Month 

Sales 

Sales Less Average Sales 
January 

$10,000 

-$2,750 

February

$11,000 

-$1,750 

March 

$10,500 

-$2,250 

April 

$11,500 

-$1,250 

May 

$12,500 

-$250 

June 

$12,000 

-$750 

July 

$14,000 

$1,250 

August 

$13,000 

$250 

September 

$13,500 

$750 

October 

$15,000 

$2,250 

November 

$14,500 

$1,750 

December 

$15,500 

$2,750 

 

Sue notices that the error between actual and average is quite high in both the first four months of 2009 and in the last three months of 2009. She wants to understand the overall error in using the average as a forecast of sales. However, when she sums up all the errors from month to month, Sue finds they sum to zero. That tells her nothing. So she squares each month’s error value and sums them:

Month 

Sales 

Error 

Error Squared 

January 

$10,000 

-$2,750 

$7,562,500 

February 

$11,000 

-$1,750 

$3,062,500 

March 

$10,500

-$2,250 

$5,062,500 

April 

$11,500 

-$1,250 

$1,562,500 

May 

$12,500 

-$250 

$62,500 

June 

$12,000 

-$750 

$562,500 

July 

$14,000 

$1,250 

$1,562,500 

August 

$13,000 

$250 

$62,500 

September 

$13,500 

$750 

$562,500 

October 

$15,000 

$2,250 

$5,062,500 

November 

$14,500

$1,750 

$3,062,500 

December 

$15,500 

$2,750 

$7,562,500 

   

Total Error: 

$35,750,000 

    

In totaling these squared errors, Sue derives the total sum of squares, or TSS error: 35,750,000. Is there any way she can improve upon that? Sue thinks for a while. She doesn’t know too much more about her 2009 sales except for the month in which they were generated. She plots the sales on a chart:

Sue notices that sales by month appear to be on an upward trend. Sue thinks for a moment. “All I know is the sales and the month,” she says to herself, “How can I develop a model to forecast accurately?” Sue reads about a statistical procedure called regression analysis and, seeing that each month’s sales is in sequential order, she wonders whether the mere passage of time simply causes sales to go higher. Sue numbers each month, with January assigned a 1 and December, a 12.

She also realizes that she is trying to predict sales with each passing month. Hence, she hypothesizes that the change in sales depends on the change in the month. Hence, sales is Sue’s dependent variable. Because the month number is used to estimate change in sales, it is her independent variable. In regression analysis, the relationship between an independent and a dependent value is expressed:

Y = α + βX + ε

    Where: Y is the value of the dependent variable

    X is the value of the independent variable

    α is a population parameter, called the intercept, which would be the value of Y when X=0

    β is also a population parameter – the slope of the regression line – representing the change in Y associated with each one-unit change in X.

    ε is the error term.

Sue further reads that the goal of regression analysis is to minimize the error sum of squares, which is why it is referred to as ordinary least squares (OLS) regression. She also notices that she is building her regression on a sample, so there is a sample regression equation used to estimate what the true regression is for the population:

Essentially, the equation is the same as the one above, however the terms indicate the sample. The Y-term (called “Y hat”) is the sample forecasted value of the dependent variable (sales) at period i; a is the sample estimate of α; b is the sample estimate of β; Xi is the value of the independent variable at period i; and ei is the error, or difference between Y hat (the forecasted value) and actual Y for period i. Sue needs to find the values for a and b – the estimates of the population parameters – that minimize the error sum of squares.

Sue reads that the equations for estimating a and b are derived from calculus, but expressed algebraically as:

Sue learns that the X and Y terms with lines above them, known as “X bar” and “Y bar,” respectively are the averages of all the X and Y values, respectively. She also reads that the Σ notation – the Greek letter sigma – represents a sum. Hence, Sue realizes a few things:

  1. She must estimate b before she can estimate a;
  2. To estimate b,she must take care of the numerator:
    1. first subtract each observation’s month number from the average month’s number (X minus X-bar),
    2. subtract each observation’s sales from the average sales (Y minus Y-bar),
    3. multiply those two together, and
    4. Add up (2c) for all observations.
  3. To get the denominator for calculating b, she must:
    1. Again subtract X-bar from X, but then square the difference, for each observation.
    2. Sum them up
  4. Calculating b is easy: She needs only to divide the result from (2) by the result from (3).
  5. Calculating a is also easy: She multiplies her b value by the average month (X-bar), and subtracts it from average sales (Y-bar).

Sue now goes to work to compute her regression equation. She goes into Excel and enters her monthly sales data in a table, and computes the averages for sales and month number:

 

Month (X) 

Sales (Y) 

 

1 

$10,000 

 

2 

$11,000 

 

3 

$10,500 

 

4 

$11,500 

 

5 

$12,500 

 

6 

$12,000 

 

7 

$14,000 

 

8 

$13,000 

 

9 

$13,500 

 

10 

$15,000 

 

11 

$14,500 

 

12 

$15,500 

Average 

6.5 

$12,750 

 

Sue goes ahead and subtracts the X and Y values from their respective averages, and computes the components she needs (the “Product” is the result of multiplying the values in the first two columns together):

X minus X-bar 

Y minus Y-bar 

Product 

(X minus X-bar) Squared 

-5.5 

-$2,750 

$15,125 

30.25 

-4.5 

-$1,750 

$7,875 

20.25 

-3.5 

-$2,250 

$7,875 

12.25 

-2.5 

-$1,250 

$3,125 

6.25 

-1.5 

-$250 

$375 

2.25 

-0.5 

-$750 

$375 

0.25 

0.5 

$1,250 

$625 

0.25 

1.5 

$250 

$375 

2.25 

2.5 

$750 

$1,875 

6.25 

3.5 

$2,250 

$7,875 

12.25 

4.5 

$1,750 

$7,875

20.25 

5.5 

$2,750 

$15,125 

30.25 

Total 

$68,500 

143 

 

Sue computes b:

b = $68,500/143

= $479.02

Now that Sue knows b, she calculates a:

a = $12,750 – $479.02(6.5)

= $12,750 – $3,113.64

= $9,636.36

Hence, assuming errors are zero, Sue’s least-squares regression equation is:

Y(hat) =$9,636.36 + $479.02X

Or, in business terminology:

Forecasted Sales = $9,636.36 + $479.02 * Month number.

This means that each passing month is associated with an average increase in sales of $479.02 for Sue’s CPA firm. How accurately does this regression model predict sales? Sue estimates the error by plugging each month’s number into the equation and then comparing her forecast for that month with the actual sales:

Month (X) 

Sales (Y) 

Forecasted Sales 

Error 

1 

$10,000 

$10,115.38

-$115.38 

2 

$11,000 

$10,594.41 

$405.59 

3 

$10,500 

$11,073.43 

-$573.43 

4 

$11,500 

$11,552.45 

-$52.45 

5 

$12,500 

$12,031.47 

$468.53 

6 

$12,000 

$12,510.49 

-$510.49 

7 

$14,000 

$12,989.51 

$1,010.49 

8 

$13,000 

$13,468.53 

-$468.53 

9 

$13,500 

$13,947.55 

-$447.55

10 

$15,000 

$14,426.57 

$573.43 

11 

$14,500 

$14,905.59 

-$405.59 

12 

$15,500 

$15,384.62 

$115.38 

 

Sue’s actual and forecasted sales appear to be pretty close, except for her July estimate, which is off by a little over $1,000. But does her model predict better than if she simply used average sales as her forecast for each month? To do that, she must compute the error sum of squares, ESS, error. Sue must square the error terms for each observation and sum them up to obtain ESS:

ESS = Σe2

Error 

Squared Error 

-$115.38 

$13,313.61 

$405.59 

$164,506.82 

-$573.43 

$328,818.04 

-$52.45 

$2,750.75 

$468.53 

$219,521.74 

-$510.49 

$260,599.54 

$1,010.49 

$1,021,089.05 

-$468.53 

$219,521.74 

-$447.55 

$200,303.19 

$573.43 

$328,818.04 

-$405.59 

$164,506.82 

$115.38 

$13,313.61 

ESS=

$2,937,062.94 

 

Notice Sue’s error sum of squares. This is the error, or unexplained, sum of squared deviations between the forecasted and actual sales. The difference between the total sum of squares (TSS) and the Error Sum of Squares (ESS) is the regression sum of squares, RSS, and that is the sum of squared deviations that are explained by the regression. RSS is also calculated as each forecasted value of sales less the average of sales:

Forecasted Sales 

Average Sales

Regression Error 

Reg. Error Squared 

$10,115.38 

$12,750 

-$2,634.62 

$6,941,198.22 

$10,594.41 

$12,750 

-$2,155.59 

$4,646,587.24 

$11,073.43 

$12,750 

-$1,676.57 

$2,810,898.45 

$11,552.45 

$12,750 

-$1,197.55 

$1,434,131.86 

$12,031.47 

$12,750 

-$718.53

$516,287.47 

$12,510.49 

$12,750 

-$239.51 

$57,365.27 

$12,989.51 

$12,750 

$239.51 

$57,365.27 

$13,468.53 

$12,750 

$718.53 

$516,287.47 

$13,947.55 

$12,750 

$1,197.55 

$1,434,131.86 

$14,426.57 

$12,750 

$1,676.57 

$2,810,898.45 

$14,905.59 

$12,750 

$2,155.59 

$4,646,587.24

$15,384.62 

$12,750 

$2,634.62 

$6,941,198.22 

   

RSS= 

$32,812,937.06 

 

Sue immediately adds the RSS and the ESS and sees they match the TSS: $35,750,000. She also knows that nearly 33 million of that TSS is explained by her regression model, so she divides her RSS by the TSS:

32,812,937.06 / 35,750,000

=.917 or 91.7%

This quotient, known as the coefficient of determination, and denoted as R2, tells Sue that each passing month explains 91.7% of the change in monthly sales that she experiences. What R2 means is that Sue improved her forecast accuracy by 91.7% by using this simple model instead of the simple average. As you will find out in subsequent blog posts, maximizing R2 isn’t the “be all and end all”. In fact, there is still much to do with this model, which will be discussed in next week’s Forecast Friday post. But for now, Sue’s model seems to have reduced a great deal of error.

It is important to note that while each month does seem to be related to sales, the passing months do not cause the increase in sales. Correlation does not mean causation. There could be something behind the scenes (e.g., Sue’s advertising, or the types of projects she works on, etc.) that is driving the upward trend in her sales.

Using the Regression Equation to Forecast Sales

Now Sue can use the same model to forecast sales for January 2010 and February 2010, etc. She has her equation, so since January 2010 is period 13, she plugs in 13 for X, and gets a forecast of $15,863.64; for February (period 14), she gets $16,342.66.

Recap and Plan for Next Week

You have now learned the basics of simple regression analysis. You have learned how to estimate the parameters for the regression equation, how to measure the improvement in accuracy from the regression model, and how to generate forecasts. Next week, we will be checking the validity of Sue’s equation, and discussing the important assumptions underlying regression analysis. Until then, you have a basic overview of what regression analysis is.

Forecast Friday Topic: Double Exponential Smoothing

May 20, 2010

(Fifth in a series)

We pick up on our discussion of exponential smoothing methods, focusing today on double exponential smoothing. Single exponential smoothing, which we discussed in detail last week, is ideal when your time series is free of seasonal or trend components, which create patterns that your smoothing equation would miss due to lags. Single exponential smoothing produces forecasts that exceed actual results when the time series exhibits a decreasing linear trend, and forecasts that trail actual results when the time series exhibits an increasing trend. Double exponential smoothing takes care of this problem.

Two Smoothing Constants, Three Equations

Recall the equation for single exponential smoothing:

Ŷt+1 = αYt + (1-α) Ŷt

Where: Ŷt+1 represents the forecast value for period t + 1

Yt is the actual value of the current period, t

Ŷt is the forecast value for the current period, t

and α is the smoothing constant, or alpha, 0≤ α≤ 1

To account for a trend component in the time series, double exponential smoothing incorporates a second smoothing constant, beta, or β. Now, three equations must be used to create a forecast: one to smooth the time series, one to smooth the trend, and one to combine the two equations to arrive at the forecast:

Ct = αYt + (1-α)(Ct-1 + T t-1)

Tt = β(Ct – Ct-1) + (1 – β)T t-1

Ŷt+1 = Ct + Tt

All symbols appearing in the single exponential smoothing equation represent the same in the double exponential smoothing equation, but now β is the trend-smoothing constant (whereas α is the smoothing constant for a stationary – constant – process) also between 0 and 1; Ct is the smoothed constant process value for period t; and Tt is the smoothed trend value for period t.

As with single exponential smoothing, you must select starting values for Ct and Tt, as well as values for α and β. Recall that these processes are judgmental, and constants closer to a value of 1.0 are chosen when less smoothing is desired (and more weight placed on recent values) and constants closer to 0.0 when more smoothing is desired (and less weight placed on recent values).

An Example

Let’s assume you’ve got 12 months of sales data, shown in the table below:

Month t

Sales Yt

1

152

2

176

3

160

4

192

5

220

6

272

7

256

8

280

9

300

10

280

11

312

12

328

You want to see if there is any discernable trend, so you plot your sales on the chart below:

The time series exhibits an increasing trend. Hence, you must use double exponential smoothing. You must first select your initial values for C and T. One way to do that is to again assume that the first value is equal to its forecast. Using that as the starting point, you set C2 = Y1, or 152. Then you subtract Y1 from Y2 to get T2: T2 = Y2 – Y1 = 24. Hence, at the end of period 2, your forecast for period 3 is 176 (Ŷ3 = 152 + 24).

Now you need to choose α and β. For the purposes of this example, we will choose an α of 0.20 and a β of 0.30. Actual sales in period 3 were 160, and our constant-smoothing equation is:

C3 = 0.20(160) + (1 – 0.20)(152 + 24)

= 32 + 0.80(176)

= 32 + 140.8

= 172.8

Next, we compute the trend value with our trend-smoothing equation:

T3 = 0.30(172.8 – 152) + (1 – 0.30)(24)

= 0.30(20.8) + 0.70(24)

= 6.24 + 16.8

=23.04

Hence, our forecast for period 4 is:

Ŷ4 = 172.8 + 23.04

= 195.84

Then, carrying out your forecasts for the 12-month period, you get the following table:

     

Alpha=

0.2

Beta=

0.3

Month t

Sales Yt

Ct

Tt

Ŷt

Absolute Deviation

1

152

       

2

176

152.00

24.00

152.00

 

3

160

172.80

23.04

176.00

16.00

4

192

195.07

22.81

195.84

3.84

5

220

218.31

22.94

217.88

2.12

6

272

247.39

24.78

241.24

30.76

7

256

268.94

23.81

272.18

16.18

8

280

290.20

23.05

292.75

12.75

9

300

310.60

22.25

313.25

13.25

10

280

322.28

19.08

332.85

52.85

11

312

335.49

17.32

341.36

29.36

12

328

347.85

15.83

352.81

24.81

       

MAD=

20.19

 

Notice a couple of things: the absolute deviation is the absolute value of the difference between Yt (shown in lavender) and Ŷt (shown in light blue). Note also that beginning with period 3, Ŷ3 is really the sum of C and T computed in period 2. That’s because period 3’s constant and trend forecasts were generated at the end of period 2 – and onward until period 12. Mean Absolute Deviation has been computed for you. As with our explanation of single exponential smoothing, you need to experiment with the smoothing constants to find a balance that most accurate forecast at the lowest possible MAD.

Now, we need to forecast for period 13. That’s easy. Add C12 and T12:

Ŷ13 = 347.85 + 15.83

= 363.68

And, your chart comparing actual vs. forecasted sales is:

As with single exponential smoothing, you see that your forecasted curve is smoother than your actual curve. Notice also how small the gaps are between the actual and forecasted curves. The fit’s not bad.

Exponential Smoothing Recap

Now let’s recap our discussion on exponential smoothing:

  1. Exponential smoothing methods are recursive, that is, they rely on all observations in the time series. The weight on each observation diminishes exponentially the more distant in the past it is.
  2. Smoothing constants are used to assign weights – between 0 and 1 – to the most recent observations. The closer the constant is to 0, the more smoothing that occurs and the lighter the weight assigned to the most recent observation; the closer the constant is to 1, the less smoothing that occurs and the heavier the weight assigned to the most recent observation.
  3. When no discernable trend is exhibited in the data, single exponential smoothing is appropriate; when a trend is present in the time series, double exponential smoothing is necessary.
  4. Exponential smoothing methods require you to generate starting forecasts for the first period in the time series. Deciding on those initial forecasts, as well as on the values of your smoothing constants – alpha and beta – are arbitrary. You need to base your judgments on your experience in the business, as well as some experimentation.
  5. Exponential smoothing models do not forecast well when the time series pattern (e.g., level of sales) is suddenly, drastically, and permanently altered by some event or change of course or action. In these instances, a new model will be necessary.
  6. Exponential smoothing methods are best used for short-term forecasting.

Next Week’s Forecast Friday Topic: Regression Analysis (Our Series within the Series!)

Next week, we begin a multi-week discussion of regression analysis. We will be setting up the next few weeks with a discussion of the principles of ordinary least squares regression (OLS), and then discussions of its use as a time-series forecasting approach, and later as a causal/econometric approach. During the course of the next few Forecast Fridays, we will discuss the issues that occur with regression: specification bias, autocorrelation, heteroscedasticity, and multicollinearity, to name a few. There will be some discussions on how to detect – and correct – these violations. Once the regression analysis miniseries is complete, we will be set up to discuss ARMA and ARIMA models, which will be written by guest bloggers who are well-experienced in those approaches. We know you’ll be very pleased with the weeks ahead!

Still don’t know why our Forecast Friday posts appear on Thursday? Find out at: http://tinyurl.com/26cm6ma

Sales Forecasting: Crucial to Small Business Success

May 18, 2010

Forecasting sales is never easy, yet the ability to do so can alleviate a lot of headaches, especially for owners of small or family businesses. Small businesses have lots of the same questions large companies do: how much inventory to acquire/keep? How many workers to staff on Wednesday? How much lift in sales will each $1,000 of advertising expenditure generate? How much will sales change if we adjust the price up/down by $1? Most business owners, with all their other pressing responsibilities, have either given sales forecasting a low priority on their task list, or given up on it entirely. This is unfortunate, since an objective system of sales forecasting can greatly simplify a business owner’s planning, identify areas for improvement, and even enhance the value of his/her business. Today’s blog post explains the various benefits of having a sales forecasting system.

Simplified Planning, Reduced Planning Time

With an objective way to forecast sales, business owners can greatly reduce the time it takes them to plan for inventory purchasing and employee staffing. This is because such a system minimizes the uncertainty of tomorrow by establishing educated guesses based on historical sales. Often, decisions based on these measures are more accurate than those made with unaided judgment. A forecasting system recognizes patterns within the data, so that a business owner can make adjustments for seasonality, trends, and business cycle occurrences. For the most part, if sales on Tuesdays have been averaging $2,000 per day and sales on Wednesdays $3,000 per day, then the business owner knows to schedule more staff on Wednesdays and carry more inventory than on Tuesdays. Just knowing how sales are trending saves the business owner some valuable time.

A sales forecasting system can also help a business owner gauge the impact of seasonality. If he/she finds that sales of her product/service in July average 10% higher than baseline monthly sales, then the owner can plan more effectively for those seasonal variations.

Detection of Opportunities and Problem Areas

Forecasting systems can also alert owners of small businesses to problems and opportunities. Returning to our Tuesday/Wednesday example, the business owner may realize an opportunity to get creative with marketing. If the business is a restaurant, the owner may decide to issue coupons and advertise specials to encourage more diners to come in on Tuesdays. The reduced business on Tuesday may also alert the business owner to a problem. If Tuesday is the restaurant’s slowest day, it may be because there’s a weekly event on Tuesdays that the owner is competing against for patrons, or because the restaurant is short-staffed on Tuesdays and many potential patrons choose not to wait. There could be many reasons, but forecasting can alert the owner to the existence of a problem and the various solutions he/she could try.

Reduced Costs, Increased Revenues, Increased Employee Morale

In trying to project sales, a business owner can make two very different mistakes – under and over predicting, – each with its own undesirable consequences. Usually, these mistakes occur when the business owner’s forecasts are due largely to “gut” or other subjective means. When an owner under predicts sales, he/she may not order enough inventory or schedule enough staff. As a result, the business may run out of inventory and not be able to fulfill orders, resulting in reduced sales and lower customer satisfaction. The inadequate staffing can also increase waiting times, which also lowers customer satisfaction. When an owner over predicts sales, he/she is likely to order too much inventory and/or schedule too many workers, which results in large quantities of unsold inventory and excessive labor costs. Moreover, there are both carrying and opportunity costs associated with excessive unsold inventory. Also, inaccurate predictions can adversely affect the morale of a business’ labor force. Frequent overstaffing due to over prediction can result in bored employees, while frequent understaffing due to under prediction can lead to burned-out employees. Either way, employee morale takes a hit. With an objective forecasting system in place, small businesses can minimize the impact of both over and under prediction.

Enhanced Business Valuation

Cash flow is the lifeblood of every business, not to mention the driver of their value as going-concerns. When entrepreneurs buy existing businesses, they want to know how much cash their generating. All things equal, those businesses that generate more cash command higher sales prices than those that generate less. In the absence of an objective forecasting system, discovery of a business’ true valuation can become problematic. Buyers may demand a discount on the price of a business to compensate for the lack of sales certainty; sellers would have no concrete way to justify the price they seek. A forecasting system greatly shortens the value discovery process and makes it less cumbersome and subjective.

In addition, lenders often make decisions based on cash flows and valuation. A forecasting system can possibly increase your likelihood of getting a loan, and also the amount of funding you seek.

ForecastEase Takes the Pain Out of Forecasting

Having a system in place to forecast sales can make your business more successful and your life easier, more enjoyable, and richer. With ForecastEase, Analysights examines your sales and builds models that generate forecasts that will help you with your planning so that you can spend more time on the strategic elements of your business. Once the models are developed, we create a simulator in Excel that lets you build scenarios painlessly and effortlessly. And the models – depending on the fluctuations of the business – are durable, not needing to be updated all the time. Click here to learn more about ForecastEase or call Analysights at (847) 895-2565.

Introducing Analysights’ Small Business Solutions

May 11, 2010

I’m pleased to announce that Analysights has developed a line of solutions designed to provide high-quality marketing research services to small businesses at affordable rates. Much like large corporations, small businesses need to forecast sales, analyze and monitor their marketplace, and understand what their customers think and where improvements must be made. However, most small businesses don’t have the budget that larger ones do to get the insights they need.

Now they don’t have to!

Small businesses can now get customized marketing research services for a flat price! Analysights has introduced three lines of small business solutions: SurveySimple, ForecastEase, and PlanPro.

SurveySimple is our small scale survey solution, which includes initial consultation, questionnaire design, survey deployment, data collection for 100 to 300 responses, and analysis and reporting with recommendations. You can choose from a Silver, Gold, or Platinum package, depending on the number of people surveyed and/or the length and complexity of the questionnaire. Find out more about SurveySimple.

ForecastEase is a customized sales forecasting solution for small businesses. We use your past sales data to build a forecast model that will help you predict what sales will be in the both the short- and long-term. We then provide you with an Excel spreadsheet powered with the model, so you need only plug in a few numbers to get estimates of upcoming sales, making it easier for you to schedule employees, order supplies and inventory, and make plans with more certainty. You can have sales forecasts made on a daily, weekly, monthly, or quarterly basis. ForecastEase also has a flat price, depending on the periodic basis chosen. Find out more about ForecastEase.

PlanPro is geared towards any small business or entrepreneur preparing a business or marketing plan. The “Market Analysis” is a critical, but often difficult, section of a business plan to create. Analysights takes the drudgery of the Market Analysis section off your hands. We will consult with you and then research your market, examine industry’s trends, competition, and regulatory environment, develop projections for the next couple of years, and provide you with the findings. For a small fee, we will even write the Market Analysis section of your business plan for you. Find out more about PlanPro.

With Analysights’ Small Business Solutions, the question is no longer a matter of “can you afford to do marketing research,” but of “can you afford not to?”