Posts Tagged ‘specification bias’

Forecast Friday Topic: Multicollinearity – How to Detect it; How to Correct it

July 15, 2010

(Thirteenth in a series)

In last week’s Forecast Friday post, we explored how to perform regression analysis using Excel. We looked at the giving history of 20 contributors to a nonprofit organization, and developed a model based on the recency, frequency, and monetary value (RFM) of their past donations. We derived the following regression equation:

We were pleased to see that our model had a coefficient of determination – or R2=0.933, indicating that our model explained 93.3% of the change in the donor’s current contribution (our Ŷ). But we were a little disheartened when we looked at the t-statistics of each of our regression coefficients. Recall that we found our recency coefficient was not significant:

Parameter

Coefficient

T-statistic

Significant?

Intercept

87.27

4.32

Yes

Months since Last

(1.80)

(1.44)

No

Times Donated

2.45

2.87

Yes

Average Contribution

0.35

3.26

Yes

Yet, most direct marketing professionals know clearly that RFM theory postulates that all three variables are significant indicators of whether and how much a donor will give (or a customer will buy). When our model doesn’t replicate what a tried and true theory has long maintained, there could possibly be something wrong.

Multicollinearity

Most times, when something doesn’t look right in the results of a regression model, it is safe to assume that one of the regression assumptions has been violated. The problem is trying to determine which assumption – or assumptions – was violated. Since the coefficient for “Months Since Last Contribution” has a t-statistic that indicates it isn’t statistically significant, we might suspect that the specification assumption is violated: that is, we may believe that “Months Since Last Contribution” is an extraneous, irrelevant variable that should not have been included in the model and, thus, be removed.

But is that really the case? There can be other reasons why a parameter estimate does not come up significant. If two or more independent variables are highly correlated, the resulting multicollinearity can cause the regression model to assign a statistically insignificant parameter estimate to an important independent variable. So, how can we detect multicollinearity?

Detecting Multicollinearity: Correlation Matrix

The first step in detecting multicollinearity is to examine the correlation among the independent variables. We do this by looking at a correlation matrix. You can run a correlation matrix in Excel by using its Data Analysis ToolPak. Looking at the correlation matrix for our variables, we find:

Correlation Matrix – Original Variables

Variable

Contribution Y

Months Since Last Donation X1

Times Donated in last 12 months

X2

Average Contribution in last 12 months

X3

Contribution (Y)

1.00

  

  

  

Months Since Last Donation – X1

-0.93

1.00

  

  

Times Donated in last 12 months – X2

0.89

-0.88

1.00

  

Average Contribution Last 12 mo. – X3

0.88

-0.84

0.69

1.00

 

A correlation of 1.00 means two variables are perfectly correlated; a correlation of 0.00 means there is absolutely no correlation. The cells in the matrix above, where the correlation is 1.00, shows the correlation of an independent variable with itself – we would expect a perfectly correlated relationship. What is most important to us are the numbers below the 1.00 correlations. The first column shows our dependent variable, “Contribution”. As you go down the column, row by row, you see that each of our independent variables is strongly correlated with the dependent variable, indicating that they are all strong predictors.

The correlation between “Months Since Last Donation” (X1) and the donor’s Contribution (Y) shows a correlation that is almost perfectly negative (-0.93), while those correlations of the dependent variable with each of the other two independent variables is almost perfectly positive with the contribution (0.89 and 0.88). When writing these in shorthand, we use the Greek letter rho, ρ, to denote correlation. Hence, to show the correlation between each independent variable with the dependent variable, we would express them as follows:

ρX1Y = -0.93

ρX2Y = 0.89

ρX3Y = 0.88

But now, let’s look at the correlations among our independent variables:

ρX1X2= -0.88

ρX1X3= -0.84

ρX2X3= 0.69

 

Notice that all of our independent variables are highly correlated with one another. The relationship between “Times Donated in Last 12 Months” and “Average Contribution in Last 12 Months” is not as strong as the correlation between those individual variables with “Months Since Last Donation,” but the correlation is still very strong.

Hence, we can conclude that multicollinearity is present in this model.

Correcting Multicollinearity: Dropping Variables

In today’s post, we will discuss one of the remedies for multicollinearity – dropping a highly correlated independent variable. Next week, we’ll discuss the other approaches to correcting multicollinearity. Sometimes, when a variable is “iffy,” we can save ourselves some trouble and just kick it out. If we were to ignore “Months Since Last Donation,” and run our regression with the remaining two variables, we end up with the following regression equation:

Ŷ= 60.68 + 3.37X2 + 0.45X3

We get R2 =0.924, suggesting that we didn’t lose much explanatory power by excluding “Months Since Last Donation.” We also get an F statistic of 103.36, much higher than the 73.90 we had in our original model. A higher F-statistic indicates a model that is more statistically valid. It also reflects the exclusion of one or more extraneous variables. Also, the t-statistics for both independent variables are significant, and they’re even higher than they were in the original model, further indicating increased validity:

Parameter

Coefficient

T-statistic

Significant?

Intercept

60.68

7.24

Yes

Times Donated

3.37

5.83

Yes

Average Contribution

0.45

5.49

Yes

Dropping “Months Since Last Donation” from our analysis worked here. However, dropping variables without a rational decision process can cause new problems. In some cases, dropping a variable can result in specification bias, as we saw in our previous example of predicting profit margin for savings and loan associations a few weeks ago. So, consider dropping variables cautiously.

Next Forecast Friday Topic: More Multicollinearity Remedies

Today, we described one of the ways to remedy multicollinearity – dropping variables. Next week, we will explore two other ways of correcting multicollinearity: obtaining more data and transforming variables. We will also discuss the pitfalls of all three of these remedies, and we will discuss when it’s not worth it to reduce the impact of multicollinearity.

*************************************

Let Analysights Take the Pain out of Forecasting!

Multicollinearity is but one of the many problems you can encounter when forecasting. Let Analysights walk you through the forecasting process so that you can spend more time making strategic decisions and less time trying to guess first where business is going. We will make your forecasting efforts seamless, so you can concentrate on running your business. Check out our Web site or call (847) 895-2565.

Advertisements

Multiple Regression: Specification Bias

July 1, 2010

(Eleventh in a series)

In last week’s Forecast Friday post, we discussed several of the important checks you must do to ensure that your model is valid. You always want to be sure that your model does not violate the assumptions we discussed earlier. Today we are going to see what happens when we violate the specification assumption, which says that we do not omit relevant independent variables from our regression model. You will see that when we leave out an important independent variable from a regression model, quite misleading results can emerge. You will also see that violating one assumption can trigger violations of other assumptions.

Revisiting our Multiple Regression Example

Recall our data set of 25 annual observations of U.S. Savings and Loan profit margin data, shown in the table below:

Year

Percentage Profit Margin (Yt)

Net Revenues Per Deposit Dollar (X1t)

Number of Offices (X2t)

1

0.75

3.92

7,298

2

0.71

3.61

6,855

3

0.66

3.32

6,636

4

0.61

3.07

6,506

5

0.70

3.06

6,450

6

0.72

3.11

6,402

7

0.77

3.21

6,368

8

0.74

3.26

6,340

9

0.90

3.42

6,349

10

0.82

3.42

6,352

11

0.75

3.45

6,361

12

0.77

3.58

6,369

13

0.78

3.66

6,546

14

0.84

3.78

6,672

15

0.79

3.82

6,890

16

0.70

3.97

7,115

17

0.68

4.07

7,327

18

0.72

4.25

7,546

19

0.55

4.41

7,931

20

0.63

4.49

8,097

21

0.56

4.70

8,468

22

0.41

4.58

8,717

23

0.51

4.69

8,991

24

0.47

4.71

9,179

25

0.32

4.78

9,318

Data taken from Spellman, L.J., “Entry and profitability in a rate-free savings and loan market.” Quarterly Review of Economics and Business, 18, no. 2 (1978): 87-95, Reprinted in Newbold, P. and Bos, T., Introductory Business & Economic Forecasting, 2nd Edition, Cincinnati (1994): 136-137

Also, recall that we built a model that hypothesized that S&L percentage profit margin (our dependent variable, Yt) was positively related to net revenues per deposit dollar (one of our independent variables, X1t), and negatively related to the number of S&L offices (our other independent variable, X2t). When we ran our regression, we got the following model:

Yt = 1.56450 + 0.23720X1t – 0.000249X2t

We also checked to see if the model parameters were significant, and obtained the following information:

Parameter

Value

T-Statistic

Significant?

Intercept

1.5645000

19.70

Yes

B1t

0.2372000

4.27

Yes

B2t

(0.0002490)

(7.77)

Yes

We also had a coefficient of determination – R2 – of 0.865, indicating that the model explains about 86.5% of the variation in S&L percentage profit margin.

Welcome to the World of Specification Bias…

Let’s deliberately leave out the number of S&L offices (X2t) from our model, and do just a simple regression with the net revenues per deposit dollar. This is the model we get:

Yt = 1.32616 – 0.16913X1t

We also get an R2 of 0.495. The t-statistics for our intercept and parameter B1t are as follows:

Parameter

Value

T-Statistic

Significant?

Intercept

1.32616

9.57

Yes

B1t

(0.16913)

(4.75)

Yes

 

Compare these new results with our previous results and what do you notice? The results of our second regression are in sharp contrast to those of our first regression. Our new model has far less explanatory power – R2 dropped from 0.865 to 0.495 – and the sign of the parameter estimate for net revenue per deposit dollar has changed: The coefficient of X1t was significant and positive in the first model, and now it is significant and negative! As a result, we end up with a biased regression model.

… and to the Land of Autocorrelation…

Recall another of the regression assumptions: that error terms should not be correlated with one another. When error terms are correlated with one another, we end up with autocorrelation, which renders our parameter estimates inefficient. Recall that last week, we computed the Durbin-Watson test statistic, d, which is an indicator of autocorrelation. It is bad to have either positive autocorrelation (d close to zero), or negative autocorrelation (d close to 4). Generally, we want d to be approximately 2. In our first model, d was 1.95, so autocorrelation was pretty much nonexistent. In our second model, d=0.85, suggesting the presence of significant positive autocorrelation!

How did this happen? Basically, when an important variable is omitted from regression, its impact on the dependent variable gets incorporated into the error term. If the omitted independent variable is correlated with any of the included independent variables, the error terms will also be correlated.

…Which Leads to Yet Another Violation!

The presence of autocorrelation in our second regression reveals the presence of another violation, not in the incomplete regression, but in the full regression. As the sentence above read: “if the independent variable is correlated with any of the included independent variables…” Remember the other assumption: “no linear relationship between two or more independent variables?” Basically, the detection of autocorrelation in the incomplete regression revealed that the full regression violated this very assumption – and thus exhibits multicollinearity! Generally, a coefficient changing between positive and negative (either direction) when one or more variables is omitted is an indicator of multicollinearity.

So was the full regression wrong too? Not terribly. As you will find in upcoming posts, avoiding multicollinearity is nearly impossible, especially with time series data. That’s because multicollinearity is typically a data problem. The severity of multicollinearity can often be reduced by increasing the number of observations in the data set. This is often not a problem with cross-sectional data, where data sets can have thousands, if not millions of observations. However, with time series data, the number of observations available is limited to how many periods of data have been recorded.

Moreover, the longer your time series, the more you risk structural changes in your data over the course of your time series. For instance, if you were examining annual patterns in bank lending within a particular census tract between 1990 and 2010, you might have a reliable model to work with. But let’s say you widen your time series to go back as far as 1970. You will see dramatic shifts in patterns in your data set. That’s because prior to 1977, when Congress passed the Community Reinvestment Act, many banks engaged in a practice called “redlining,” where they literally drew red lines around some neighborhoods, usually where minorities and low-income households were, and did not lend there. In this case, increasing the size of the data set might reduce multicollinearity, but actually cause other modeling problems.

And as you’ve probably guessed, one way of reducing multicollinearity can be dropping variables from the regression. But look what happened when we dropped the number of S&L offices from our regression: we might have eliminated multicollinearity, but we gained autocorrelation and specification bias!

Bottom Line:

The lesson, for us as forecasters and analysts, therefore is that we must accept that models are far from perfect and we must weigh the impact of various regression model specifications. Is the multicollinearity that is present in our model tolerable? Can we add more observations without causing new problems? Can we drop a variable from a regression without causing either specification bias or material differences in explanatory power, parameter estimates, model validity, or even forecast accuracy? Building the model is easy – but it’s these normative considerations that’s challenging.

Next Forecast Friday Topic: Building Regression Models Using Excel

In next week’s Forecast Friday post, we will take a break from discussing the theory of regression analysis and look at a demonstration of how to use the “Regression Analysis” tool in Microsoft Excel. This demonstration is intended to show you how easy running a regression is, so that you can start applying the concepts and building forecasts for your business. Until then, thanks again for reading Forecast Friday, and I wish you and your family a great 4th of July weekend!

*************************

Analysights is now on Facebook!

Analysights is now doing the social media thing! If you like Forecast Friday – or any of our other posts – then we want you to “Like” us on Facebook! By “Like-ing” us on Facebook, you’ll be informed every time a new blog post has been published, or when other information comes out. Check out our Facebook page.

Forecast Friday Topic: Multiple Regression Analysis

June 17, 2010

(Ninth in a series)

Quite often, when we try to forecast sales, more than one variable is often involved. Sales depends on how much advertising we do, the price of our products, the price of competitors’ products, the time of the year (if our product is seasonal), and also demographics of the buyers. And there can be many more factors. Hence, we need to measure the impact of all relevant variables that we know drive our sales or other dependent variable. That brings us to the need for multiple regression analysis. Because of its complexity, we will be spending the next several weeks discussing multiple regression analysis in easily digestible parts. Multiple regression is a highly useful technique, but is quite easy to forget if not used often.

Another thing to note, regression analysis is often used for both time series and cross-sectional analysis. Time series is what we have focused on all along. Cross-sectional analysis involves using regression to analyze variables on static data (such as predicting how much money a person will spend on a car based on income, race, age, etc.). We will use examples of both in our discussions of multiple regression.

Determining Parameter Estimates for Multiple Regression

When it comes to deriving the parameter estimates in a multiple regression, the process gets both complicated and tedious, even if you have just two independent variables. We strongly advise you to use the regression features of MS-Excel, or some statistical analysis tool like SAS, SPSS, or MINITAB. In fact, we will not work out the derivation of the parameters with the data sets, but will provide you the results. You are free to run the data we provide on your own to replicate the results we display. I do, however, want to show you the equations for computing the parameter estimates for a three-variable (two independent variables and one dependent variable), and point out something very important.

Let’s assume that sales is your dependent variable, Y, and advertising expenditures and price are your independent variables, X1 and X2, respectively. Also, the coefficients – your parameter estimates will have similar subscripts to correspond to their respective independent variable. Hence, your model will take on the form:

 

Now, how do you go about computing α, β1 and β2? The process is similar to that of a two-variable model, but a little more involved. Take a look:

The subscript “i” represents the individual oberservation.  In time series, the subscript can also be represented with a “t“.

What do you notice about the formulas for computing β1 and β2? First, you notice that the independent variables, X1 and X2, are included in the calculation for each coefficient. Why is this? Because when two or more independent variables are used to estimate the dependent variable, the independent variables themselves are likely to be related linearly as well. In fact, they need to be in order to perform multiple regression analysis. If either β1 or β2 turned out to be zero, then simple regression would be appropriate. However, if we omit one or more independent variables from the model that are related to those variables in the model, we run into serious problems, namely:

Specification Bias (Regression Assumptions Revisited)

Recall from last week’s Forecast Friday discussion on regression assumptions that 1) our equation must correctly specify the true regression model, namely that all relevant variables and no irrelevant variables are included in the model and 2) the independent variables must not be correlated with the error term. If either of these assumptions is violated, the parameter estimates you get will be biased. Looking at the above equations for β1 and β2, we can see that if we excluded one of the independent variables, say X2, from the model, the value derived for β1 will be incorrect because X1 has some relationship with X2. Moreover, X2‘s values are likely to be accounted for in the error terms, and because of its relationship with X1, X1 will be correlated with the error term, violating the second assumption above. Hence, you will end up with incorrect, biased estimators for your regression coefficient, β1.

Omitted Variables are Bad, but Excessive Variables Aren’t Much Better

Since omitting relevant variables can lead to biased parameter estimates, many analysts have a tendency to include any variable that might have any chance of affecting the dependent variable, Y. This is also bad. Additional variables means that you need to estimate more parameters, and that reduces your model’s degrees of freedom and the efficiency (trustworthiness) of your parameter estimates. Generally, for each variable – both dependent and independent – you are considering, you should have at least five data points. So, for a model with three independent variables, your data set should have 20 observations.

Another Important Regression Assumption

One last thing about multiple regression analysis – another assumption, which I deliberately left out of last week’s discussion, since it applies exclusively to multiple regression:

No combination of independent variables should have an exact linear relationship with one another.

OK, so what does this mean? Let’s assume you’re doing a model to forecast the effect of temperature on the speed at which ice melts. You use two independent variables: Celsius temperature and Fahrenheit temperature. What’s the problem here? There is a perfect linear relationship between these two variables. Every time you use a particular value of Fahrenheit temperature, you will get the same value of Celsius temperature. In this case, you will end up with multicollinearity, an assumption violation that results in inefficient parameter estimates. A relationship between independent variables need not be perfectly linear for multicollinearity to exist. Highly correlated variables can do the same thing. For example, independent variables such as “Husband Age” and “Wife Age,” or “Home Value” and “Home Square Footage” are examples of independent variables that are highly correlated.

You want to be sure that you do not put variables in the model that need not be there, because doing so could lead to multicollinearity.

Now Can We Get Into Multiple Regression????

Wasn’t that an ordeal? Well, now the fun can begin! I’m going to use an example from one of my old graduate school textbooks, because it’s good for several lessons in multiple regression. This data set is 25 annual observations to predict the percentage profit margin (Y) for U.S. savings and loan associations, based on changes in net revenues per deposit dollar (X1) and number of offices (X2). The data are as follows:

Year

Percentage Profit Margin (Yt)

Net Revenues Per Deposit Dollar (X1t)

Number of Offices (X2t)

1

0.75

3.92

7,298

2

0.71

3.61

6,855

3

0.66

3.32

6,636

4

0.61

3.07

6,506

5

0.70

3.06

6,450

6

0.72

3.11

6,402

7

0.77

3.21

6,368

8

0.74

3.26

6,340

9

0.90

3.42

6,349

10

0.82

3.42

6,352

11

0.75

3.45

6,361

12

0.77

3.58

6,369

13

0.78

3.66

6,546

14

0.84

3.78

6,672

15

0.79

3.82

6,890

16

0.70

3.97

7,115

17

0.68

4.07

7,327

18

0.72

4.25

7,546

19

0.55

4.41

7,931

20

0.63

4.49

8,097

21

0.56

4.70

8,468

22

0.41

4.58

8,717

23

0.51

4.69

8,991

24

0.47

4.71

9,179

25

0.32

4.78

9,318

Data taken from Spellman, L.J., “Entry and profitability in a rate-free savings and loan market.” Quarterly Review of Economics and Business, 18, no. 2 (1978): 87-95, Reprinted in Newbold, P. and Bos, T., Introductory Business & Economic Forecasting, 2nd Edition, Cincinnati (1994): 136-137

What is the relationship between the S&Ls’ profit margin percentage and the number of S&L offices? How about between the margin percentage and the net revenues per deposit dollar? Is the relationship positive (that is, profit margin percentage moves in the same direction as its independent variable(s))? Or negative (the dependent and independent variables move in opposite directions)? Let’s look at each independent variable’s individual relationship with the dependent variable.

Net Revenue Per Deposit Dollar (X1) and Percentage Profit Margin (Y)

Generally, if revenue per deposit dollar goes up, would we not expect the percentage profit margin to also go up? After all, if the S & L is making more revenue on the same dollar, it suggests more efficiency. Hence, we expect a positive relationship. So, in the resulting regression equation, we would expect the coefficient, β1, for net revenue per deposit dollar to have a “+” sign.

Number of S&L Offices (X2) and Percentage Profit Margin (Y)

Generally, if there are more S&L offices, would that not suggest either higher overhead, increased competition, or some combination of the two? Those would cut into profit margins. Hence, we expect a negative relationship. So, in the resulting regression equation, we would expect the coefficient, β2, for number of S&L offices to have a “-” sign.

Are our Expectations Correct?

Do our relationship expectations hold up?  They certainly do. The estimated multiple regression model is:

Yt = 1.56450 + 0.23720X1t – 0.000249X2t

What do the Parameter Estimates Mean?

Essentially, the model says that if net revenues per deposit dollar (X1t) increase by one unit, then percentage profit margin (Yt) will – on average – increase by 0.23720 percentage points, when the number of S&L offices is fixed. If the number of offices (X2t) increases by one, then percentage profit margin (Yt) will decrease by an average of 0.000249 percentage points, when net revenues are fixed.

Do Changes in the Independent Variables Explain Changes in The Dependent Variable?

We compute the coefficient of determination, R2, and get 0.865, indicating that changes in the number of S&L offices and in the net revenue per deposit dollar explain 86.5% of the variation in S&L percentage profit margin.

Are the Parameter Estimates Statistically Significant?

We have 25 observations, and three parameters – two coefficients for the independent variables, and one intercept – hence we have 22 degrees of freedom (25-3). If we choose a 95% confidence interval, we are saying that if we resampled and replicated this analysis 100 times, the average of our parameter estimates will be contain the true parameter approximately 95 times. To do this, we need to look at the t-values for each parameter estimate. For a two-tailed 95% significance test with 22 degrees of freedom, our critical t-value is 2.074. That means that if the t-statistic for a parameter estimate is greater than 2.074, then there is a strong positive relationship between the independent variable and the dependent variable; if the t-statistic for the parameter estimate is less than -2.074, then there is a strong negative relationship. This is what we get:

Parameter

Value

T-Statistic

Significant?

Intercept

1.5645000

19.70

Yes

B1t

0.2372000

4.27

Yes

B2t

(0.0002490)

(7.77)

Yes

So, yes, all our parameter estimates are significant.

Next Forecast Friday: Building on What You Learned

I think you’ve had enough for this week! But we are still not finished. We’re going to stop here and continue with further analysis of this example next week. Next week, we will discuss computing the 95% confidence interval for the parameter estimates; determining whether the model is valid; and checking for autocorrelation. The following Forecast Friday (July 1) blog post will discuss specification bias in greater detail, demonstrating the impact of omitting a key independent variable from the model.

Forecast Friday Topic: Prelude to Multiple Regression Analysis – Regression Assumptions

June 10, 2010

(Eighth in a series)

In last week’s Forecast Friday post, we continued our discussion of simple linear regression analysis, discussing how to check both the slope and intercept coefficients for significance. We then discussed how to create a prediction interval for our forecasts. I had intended this week’s Forecast Friday post to delve straight into multiple regression analysis, but have decided instead to spend some time talking about the assumptions that go into building a regression model.  These assumptions apply to both simple and multiple regression analysis, but their importance is especially noticeable with multiple regression, and I feel it is best to make you aware of them, so that when we discuss multiple regression both as a time series and as a causal/econometric forecasting tool, you’ll know how to detect and correct regression models that violate these assumptions. We will formally begin our discussion of multiple regression methods next week.

Five Key Assumptions for Ordinary Least Squares (OLS) Regression

When we develop our parameter estimates for our regression model, we want to make sure that all of our estimators have the smallest variance. Recall that when you were computing the value of your estimate, b, for the parameter β, in the equation below:

You were subtracting your independent variable’s average from each of its actual values, and doing likewise for the dependent variable. You then multiplied those two quantities together (for each observation) and summed them up to get the numerator of that calculation. To get the denominator, you again subtracted the independent variable’s mean from each of its actual values and then squared them. Then you summed those up. The calculation of the denominator is the focal point here: the value you get for your estimate of β is the estimate that minimizes the squared error for your model. Hence, the term, least squares. If you were to take the denominator of the equation above and divide it by your sample size (less one: n-1), you would get the variance of your independent variable, X. This variance is something you also want to minimize, so that your estimate of β is efficient. When your parameter estimates are efficient, you can make stronger statistical statements about them.

We also want to be sure that our estimators are free of bias. That is, we want to be sure that our sample estimate, b, is on average, equal to our true population parameter, β. That is, if we calculated several estimates of β, the average of our b’s should equal β.

Essentially, there are five assumptions that must be made to ensure our estimators are unbiased and efficient:

Assumption #1: The regression equation correctly specifies the true model.

In order to correctly specify the true model, the relationship between the dependent and independent variable must be linear. Also, we must neither exclude relevant independent variables from nor include irrelevant independent variables in our regression equation. If any of these conditions are not met – that is, Assumption #1 is violated – then our parameter estimates will exhibit bias, particularly specification bias.

In addition, our independent and dependent variables must be measured accurately. For example, if we are trying to estimate salary based on years of schooling, we want to make sure our model is measuring years of schooling as actual years of schooling, and not desired years of schooling.

Assumption #2: The independent variables are fixed numbers and not correlated with error terms.

I warned you at the start of our discussion of linear regression that the error terms were going to be important. Let’s start with the notion of fixed numbers. When you are running a regression analysis, the values of each independent variable should not change every time you test of the equation. That is, the values of your independent variables are known and controlled by you. In addition, the independent variables should not be correlated with the error term. If an independent variable is correlated with the error term, then it is very possible a relevant independent variable was excluded from the equation. If Assumption #2 is violated, then your parameter estimates will be biased.

Assumption #3: The error terms ε, have a mean, or expected value, of zero.

As you noticed in the past blog post, when we developed our regression equation for Sue Stone’s monthly sales, we went back in and plugged each observation’s independent variable into our model and generated estimates of sales for that month. We then subtracted the estimated sales from the actual. Some of our estimates were higher than average, some were lower. Summing up all these errors, they should equal zero. If they don’t, they will result in a biased estimate of the intercept, a (which we use to estimate α). This assumption is not of serious concern, however, since the intercept is often of secondary importance to the slope estimate. We also assume that the error terms are normally distributed.

Assumption #4: The error terms have a constant variance.

The variance of the error term for all values of Xi should be constant, that is, the error terms should be homoscedastic. Visually, if you were to plot the line generated by your regression equation, and then plot the error terms for each observation as points above or below the regression line, the points should cluster around the line in a band of equal width above and below the regression line. If, instead, the points began to move further and further away from the regression line as the value of X increased, then the error terms are heteroscedastic, and the constant variance assumption is violated. Heteroscedasticity does not bias parameter estimates, but makes them inefficient, or untrustworthy.

Why does heteroscedasticity occur? Sometimes, a data set has some observations whose values for the independent variable are vastly different from those of the other observations. These cases are known as outliers. For example, if you have five observations, and their X values were as follows:

{ 5, 6, 6, 7, 20}

The fifth observation would be the outlier, since its X value of 20 is so different from that of the four previous observations. Regression equations place excessive weight on extreme values. Let’s assume that you were trying to construct a model to predict new car purchases based on income. You choose “household income” as your dependent variable and “new car spending” as the dependent variable. You survey 10 people who bought a new car, and you record both their income and the amount they paid for the car. You sort each respondent in order by income and look at their spending, as depicted in the table below:

Respondent

Annual Income

New Car Purchase Price

1

$30,000

$25,900

2

$32,500

$27,500

3

$35,000

$26,000

4

$37,500

$29,000

5

$40,000

$32,000

6

$42,500

$30,500

7

$45,000

$34,000

8

$47,500

$26,500

9

$50,000

$38,000

10

$52,500

$40,000

 

Do you notice the pattern that as income increases, the new car purchase price tends to move upward? For the most part, it does. But, does it go up consistently? No. Notice how respondent #3 spent less for a car than the two respondents with lower incomes; respondent #8 spent much less for a car than lower-income respondents 4-7. Respondent #8 is an outlier. This happens because lower-income households are limited in their options for new cars, while higher-income households have more options. A low-income respondent may be limited to buying a Ford Focus or a Honda Civic; but a higher-income respondent may be able to buy a Lexus or BMW, yet still choose to buy the Civic or the Focus. Heteroscedasticity is very likely to occur with this data set. In case you haven’t guessed, heteroscedasticity is more likely to occur with cross-sectional data, rather than with time series data.

Assumption #5: The error terms are not correlated with each other.

Knowing the error term for any of our observations should not allow us to predict the error term of any other observation; the errors must be truly random. If they aren’t, autocorrelation results and the parameter estimates are inefficient, though unbiased. Autocorrelation is much more common with time series data than with cross-sectional data, and occurs because past occurrences can influence future ones. A good example of this is when I was building a regression model to help a college forecast enrollment. I started by building a simple time series regression model, then examined the errors and detected autocorrelation. How did it happen? Because most students who are enrolled in the Fall term are also likely to be enrolled again in the consecutive Spring term. Hence, I needed to correct for that autocorrelation. Similarly, while a company’s advertising expenditures in April may impact its sales in April, they are also likely to have some impact on its sales in May. This too can cause autocorrelation.

When these assumptions are kept, your regression equation is likely to contain parameter estimates that are the “best, linear, unbiased estimators” or BLUE. Keep these in mind as we go through our upcoming discussions on multiple regression.

Next Forecast Friday Topic: Regression with Two or More Independent Variables

Next week, we will plunge into our discussion of multiple regression. I will give you an example of how multiple variables are used to forecast a single dependent variable, and how to check for validity. As we go through the next couple of discussions, I will show you how to analyze the error terms to find violations of the regression assumptions. I will also show you how to determine the validity of the model, and to identify whether all independent variables within your model are relevant.